高級檢索

基於KH-KELM的鳥類聲音分類識別

Bird sound classification and recognition based on KH-KELM

  • 摘要: 鳥鳴是鳥類生物學最重要的特征之一💌,鳥鳴特征參數的選取和鳥鳴分類提高精度是學者們一直研究的方向🧚🏼。基於鳥鳴識別技術提出基於磷蝦群優化的核極限學習機(KH-KELM)分類模型🧖🏻:采用Mel頻率倒譜系數(MFCC)對上海周邊具有代表性的30種鳥類聲音信號進行特征提取🔫👴🏻,提取出的特征參數用極限學習機(ELM)作為基礎分類模型進行識別和分類,結合核函數思想優化基礎模型並使用磷蝦群算法(KHA)對訓練參數優選🈷️,實現對鳥鳴信號的識別分類。為驗證磷蝦群算法優化的核極限學習機分類模型的分類效果和分類穩定性🤘🏼,對5、10、20和30種鳥類聲音信號進行分類,測試結果表明✡️,與極限學習機(ELM)、反向傳播神經網絡(BP)、支持向量機(SVM)和核極限學習機(KELM)分類模型對比,並與基於遺傳算法(GA)🎠、粒子群算法(PSO)和蟻群算法(ACO)優化的核極限學習機(KELM)模型對比,磷蝦群算法優化的核極限學習機分類模型的分類識別率分別為99.65%、97.79%🧍🏻‍♂️、94.48%和89.21%🚴‍♂️,具有最好的分類精度🐊、分類穩定性和更強的泛化能力💂‍♂️。

     

    Abstract: Birdsong is one of the most important features of bird biology. The selection of bird song characteristic parameters and the improvement of birdsong classification accuracy have been the research directions of scholars. Based on birdsong recognition technology, a kernel extreme learning machine classification model based on krill herd optimization was proposed. The mel frequency cepstral coefficient (MFCC) was used to extract the features of the representative 30 kinds of bird sound signals around Shanghai. The extracted feature parameters were identified and classified by extreme learning machine (ELM) as the basic classification model. The basic model was optimized with the combination of the kernel function idea. The krill herd algorithm (KHA) algorithm was used to optimize the training parameters for the realization of the recognition and classification of bird song signals. In order to verify the classification performance and stability of the krill herd-optimized kernel extreme learning machine (KEML) classification model, 5, 10, 20 and 30 bird sound signals were classified and compared with the ELM, BP, SVM and KELM classification models, as well as the KELM model based on genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). The results showed that the classification recognition rates of the krill herd optimization kernel extreme learning machine classification model were 99.65%, 97.79%, 94.48% and 89.21%, respectively, with higher classification accuracy, stability and stronger generalization ability.

     

/

返回文章
返回
摩臣5娱乐专业提供:摩臣5娱乐摩臣5🧙🏿、摩臣5平台等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,摩臣5娱乐欢迎您。 摩臣5娱乐官網xml地圖