高級檢索

基於密集連接的層次化顯著性物體檢測網絡

Hierarchical Salient Object Detection Network with Dense Connections

  • 摘要: 全卷積神經網絡(FCN)在許多密集標記任務中表現出色。最近,基於FCN的顯著性物體檢測模型得到了快速發展。在本文中👦🏽,提出了一種基於FCN的像素級顯著物體檢測網絡。該模型首先通過自動學習多層次多尺度的顯著性特征進行顯著性粗略預測,包括顏色🪻、紋理、形狀和物體性等特征。然後采用密集連接的特征提取模塊來進一步提取更豐富的特征信息。此外,本文引入跳層結構以提供更好的特征表示🧞,利用深層產生的物體性語義特征引導淺層輸出的顯著性圖更好定位顯著性對象🐫,最後,網絡使用加權融合模塊以組合各種特征。為了進一步提高顯著圖的空間連貫性並生成清晰輪廓,本文采用條件隨機場(CRF)模型作為後處理步驟以優化網絡預測得到的加權顯著性圖🧛🏻‍♂️🚵🏽。整個網絡以粗糙到精細的方式進行顯著性檢測🚣🏽,在5個公開的常用基準數據集上進行性能評估,並與10個具有代表性的算法進行比較,證明了本文所提模型的穩健性和有效性。

     

    Abstract: Fully convolutional neural networks (FCNs) have shown outstanding performance in many dense labeling tasks. FCN-like salient object detection models haven mostly developed lately. In the work, we propose a novel pixel-wise salient object detection network based on FCN by aggregating multi-level feature maps. Our model first makes a coarse prediction by automatically learning various saliency cues, including color and texture contrast, shapes and objectness. Then a densely connected feature extraction block is adopted to further extract rich features at each resolution. Moreover, skip-layer structure is introduced for providing a better feature representation and helping shallow side outputs locate salient objects. In addition, a weighted-fusion module is utilized to combine multi-level features. Finally, a fully connected CRF model can be optimally incorporated to improve spatial coherence and contour localization in the fused saliency map. The whole architecture works in a coarse to fine manner. Evaluations on five benchmark datasets and comparisons with 10 state-of-the-art algorithms demonstrate the robustness and effciency of our proposed model.

     

/

返回文章
返回
摩臣5娱乐专业提供⛹🏻:摩臣5娱乐🧞‍♀️、摩臣5摩臣5平台等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,摩臣5娱乐欢迎您。 摩臣5娱乐官網xml地圖