高級檢索

基於BP神經網絡的機械運輸設備管理與回報率分析

Management of Mechanical Transport Equipment and Analysis of Return Rate by Using BP Neural Network

  • 摘要: 基於中冶寶鋼某廠的24個月的機械運輸設備運行數據,首先利用單層隱含層的BP神經網絡預測下月回報率🏂🏿,提出了對模型的輸入層、隱含層及其節點數的改進方案,保證模型擬合程度高的同時也確保訓練的高效和快速收斂。經過改進模型的訓練🪑,僅用了150次左右的訓練就達到期望誤差0.000 5。將影響回報率的設備🙋🏽🔢,選取數據進一步篩選🧑🏿,並利用MATLAB進行占比分析🧙🏿‍♀️,使工程設備的回報率逐年上升#️⃣。結合運輸設備回報率的波動性🧠,解決高利用高風險率機械運輸設備的設定標準,通過雙高設備出現問題的因素分析提出以“檢”代“修”、以“修”代“換”的機械設備管理要求👩🏼‍🦱。

     

    Abstract: Based on the single mechanical transport equipment report of MCC, by using BP neural network with a single hidden layer from MATLAB, the company's return rate in next month is forecast. Propose a scheme that improve the input layer, the hidden layer and its node to ensure the high efficiency of training and the speed of convergence rate. After using the improved model, with only 150 training, the expected error reach 0.0005. Subsequently, further screening the selected data for equipment that affects the rate of return, combining with the fluctuant return rate of transportation equipment to set a screening standard for high utilization rate and high risk rate. Analyzing the problems arising from the emergence of dual high equipment to put forward the equipment management requires that replace ‘repair’ with ‘inspection’ and replace ‘change’ with ‘repair’.

     

/

返回文章
返回
摩臣5娱乐专业提供🧑‍✈️:摩臣5娱乐摩臣5摩臣5平台等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,摩臣5娱乐欢迎您。 摩臣5娱乐官網xml地圖